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Abstract If the concentration of drug in one compartment of a linear 
N-compartment system, without sinks and loss only from the sampled 
compartment is sampled, then the total apparent volume of distribution 
can be determined without knowledge of the topology of the system. This 
apparent volume is identical to the apparent volume of the corresponding 
closed system. 
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Oppenheimer and others have derived a noncompart- 
mental drug distribution volume (1). This volume is the 
ratio of the first statistical moment of the blood drug 
concentration-time function observed after a unit intra- 
venous drug dose to the integral of the function on ( 0 , ~ ) .  
Benet and Galeazzi have re-presented Oppenheimer’s 
derivation (2). In both these texts the derivation is not 
strictly analytical and relies mainly on unsubstantiated 
statements. However, this expression for a distribution 
volume has previously been derived, for an N-compart- 
mental system, in a strict analytical fashion by Bright 
(3). 

Bright’s derivation is based on the following assump- 
tions: 

( a )  irreversible drug loss from the compartmental 
system occurs only from the sampled compartment; 

(b )  the eigenvalues of the coefficient matrix are all real 
and distinct; 

( c )  if Compartment j is connected to Compartment 
i (i and j W,. . .N,i # j )  by a rate constant, k;! > 0, then 
compartment i is connected to compartment J by a rate 
constant kij > 0; 

( d )  ki; = k;;. 
Conditions c and d define the coefficient matrix of the 

N-compartmental system as a symmetric matrix which 
directly implies condition b. Conditions b and c ,  but not 
necessarily condition d ,  are obviously realizable for 
mammillary and caternary compartmental systems (4,5). 
However, condition b specifically excludes any compart- 
mental system whose matrix has repeated real eigenvalues 
or has pairs of complex conjugate eigenvalues. Condition 
c excludes systems with nonreversible cycles involving 
three or more compartments, regardless of the validity of 
condition b. 

Compartment systems, that are based on physiological 
considerations and include specific compartments for the 
arterial and venous blood, must contain nonreversible drug 
circulation cycles involving three or more compartments. 
Consequently, previous derivations (3) are not applicable 
to such systems. 

In the present report, a relationship between the volume 
of distribution of a compartmental system and the first 
moment of the sampled function is derived. This deriva- 

tion does not require conditions on the eigenvalues of the 
system, the topology of the system, or the intercompart- 
mental rate constants. 

THEORY 

Consider an arbitrary set of N interconnected compartments in which 
it is possible for material in Compartment j to reach all other Compart- 
ments i ,  i # j .  Such a system of compartments does not contain any sinks, 
disjointed sets of compartments, or subsystems (6). For such a system: 

where XjGt1,2,. . .N)  is the amount of drug in compartment j, and X; 
is the first derivative with respect to time of Xj. Intercompartmental rate 
constants, kji and kij, are for drug transport from Compartment j to 
Compartment i and from Compartment i to Compartmentj, respectively 
(j and it1,2,. . .N,i # j). Both kij and kji are t 0. If a particular ki, is zero, 
the status of k;i cannot be inferred. 

The Ej’s are defined as: 

N 
Ej = kjo + ,& kji 

J # i  

Gt1,2, .  . .N)  (Eq. 2) 

where kj,,(kjo 2 0) is the rate constant for irreversible drug loss from the 
system uia Compartment j .  

The coefficient matrix A is a dominant diagonal matrix and, since the 
Compartmental system does not contain any sinks or disjointed subsys- 
tems, matrix A cannot be reduced to a matrix of the form: 

(‘u “B) 
by some permutation of the rows and columns where Pand Qare square 
matrixes and 0 consists of zero elements. These row column permuta- 
tions are equivalent to a renumbering of the compartmental system 
(6). 

Matrix A is irreducible and theorems have been given (7) for irreduc- 
ible dominant diagonal matrixes of the form specified by matrix A; thus, 
the determinant of matrix A is bound by IAI # 0 if a t  least one k,, t 0, 
and IAI = 0 if all the k;, = 0 forjc1,2,. . .N. 

A special form of matrix A is one in which only one k;, is greater than 
zero. Considering such a system, and without loss of generality, let klo 
> 0 and kj, = OGt2,3,. . .N) .  In this case: 

N 

J = 2  j = 2  
IAI = - ( ~ I O  + ,$ kl j )  I + ,E (-1)’J-’)k,l IM1jI Z 0 (Eq. 3) 

where M11 is the principle minor of matrix A obtained by deleting Row 
1 and Column 1, and the Mij’s are the minors of A obtained by deleting 
Row 1 and ColumnjGc2,3,. . .N) .  

The minors, MIL and M1j are independent of klo.  By setting klo  = 0 
in Eq. 3 and utilizing Taussky’s theorem, it follows that: 

consequently, Eq. 3 becomes: 

(A1 = -kioIMiiI (Eq. 4) 

Volume of Distribution-Consider a closed irreducible compart- 
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mental system ( i e . ,  k,, = 0 for all j ,  jt1,2,. . .N)  with a unit drug impulse 
input, 6 0 ,  into a particular compartment. Assume the drug concentra- 
tion-time function, &), in Compartment 1 is observed. Since the system 
is closed, the amount of drug in the compartmental system a t  any time 
t is D. Also, since the system is irreducible and closed, the system will 
eventually achieve a state of drug concentration equilibrium. Conse- 
quently, the equilibrium drug concentration, C ( m ) ,  in Compartment 1 
is governed by e(m) > 0. The volume of distribution of the closed system, 
V ,  may be defined as the scalar that maps the equilibrium concentration 
in the sampled compartment to the known amount of drug in the system, 
where V =  D/C(m) .  

If the equilibrium concentration in all compartments of the closed 
system were identical, then V would define the exact volume of the sys- 
tem. However, since the latter condition cannot be assumed to hold for 
an arbitrarily closed compartmental system, the derived volume must 
be regarded as an apparent distribution volume. In general, c(m) will not 
be constant for all observation points. Consequently, the numerical value 
of V depends on which particular compartment is sampled. 

The apparent volume of an open irreducible compartmental system 
is the same as the corresponding closed system. When the topology and 
intercompartmental rate constants of an open system are known, the 
distribution volume can be calculated readily. However, an analytical 
method for calculating V ,  which does not require specified topology or 
intercompartmental rate constants, would be useful since the calculated 
V would be model independent. 

Theorem 1-For an irreducible compartmental system with irre- 
versible drug loss from one compartment only and sampling from the 
same compartment, the first moment, t ,  of the sample concentration- 
time function, C ( t ) ,  after an impulse input, 6D, into the sample com- 
partment is related to the apparent volume of distribution, V ,  of the 
corresponding closed compartmental system by: 

= v 
J - C ( t ) d t  

where 5 = J r t C ( t ) d t / J ; C ( t ) d t .  
Proof-To establish a proof, expressions for t / J ; C ( t ) d t  of an open 

Compartmental system with sampling and loss from one compartment 
and the concentration a t  t = m in the corresponding closed system, e ( m ) ,  
are required. These expressions are derived first and then used to es- 
tablish the theorem. 

Open System-For an impulse input, 6D, into Compartment 1, the 
initial conditions are Xl(+O) = D and X;(+O) = 0 for jt2,3,. . .N. With 
these initial conditions, the Laplace transform x1(s) of can be ex- 
pressed by standard methods as: 

where bl and a, are (-1)J times the sum of the determinants of all the 
j-squared principle minors of matrix A,je1,2,. . .N - 1,  and matrix M11, 
respectively. 

Since A and M11 are matrixes with real elements, the coefficients a, 
and bl are real. Both A and M I L  are dominant diagonal matrixes and by 
the application of Gerschgorins root location theorem (8) both A and M I L  
have eigenvalues with negative real parts. Consequently, the polynomials 
I s  I - A1 and I s l -  Mill have coefficients that  are all of the same sign 
(9). Since the diagonal elements of A and M11 are negative, the coeffi- 
cients a1 and bl are positive, consequently, a, > 0 and bl > 0 for all 
j(jt1,2,. . .N - 1) and (-l)NI A J  > 0 as is ( - l ) N - l J M 1 l J .  

By standard Laplace transform theory: 

lim ts-0 

which on substitution of Eq. 4 into Eq. 6 gives: 

Also, by standard Laplace transform theory: 

The latter identity in Eq. 8 follows from Eq. 4. The limits in Eqs. 6 and 
8 are guaranteed by the fact that Xljc1,2, .  . .N, are nonnegative bounded 
functions such that Xj(m)  = O(10). The X l ( t )  functions are nonnegative 
since the off diagonal elements of A are 30 (ll),  and X i ( - )  = 0 because 
the eigenvalues of A have negative real parts. Combining Eqs. 7 and 8 and 
substituting X , ( t )  = V l C ( t ) ,  where V1 is the volume of Compartment 
1, then: 

Closed System-In the arbitrary open system, k 10 > 0 and kjo.= 0 for 
jt2,. . .N; consequently, the corresponding closed system is obtained by 
setting klo = 0 in A. Let the closed system matrix be A and let &I be the 
matrix obtained by deleting Row one and Column one from A; &I = MIL 
and from Eq. 4, IAl = 0. Let 8 1 ( t )  represent the mass-time function of 
drug in Compartment 1 after an impulse input, 6D, into Compartment 
1. 

By standard Laplace transform theory: 

(Eq. 10) 

where 6; is (-1)' times the sum of the determinants of all the j-squared 
principle minors of A. 

Since the volume of distribution, V ,  is defined by V = D/C(m) ,  and 
V l c ( - )  = 81 ( m ) ,  then from Eq. 10: 

v1 (Eq. 11) 
6 ~ -  1 

(- 1 )  N- 1 I Mll I 
The equivalence of Eqs. 9 and 11 is necessary and sufficient for Theorem 
1 to hold. Consequently, if 

6 ~ - 1  = (biv-1- alv-zkio) (Eq. 12) 

then Theorem 1 is established. The latter identity, Eq. 12, can be proved 
as follows: The coefficients ~ N - I ,  6 N - 1 ,  and aN-2 are given as: 

- - ( - 1 ) N - l I  MlIID 
6 ~ -  1 

V =  

N -  1 

j = 1  
aN-2=( -1 )N-2  l&;jl (Eq. 14) 

where Mjj and f i j j  are the ( N  - 1) squared principle minors of the N -  
squared matrixes A and A, respectively, and the nj j ' s  are the ( N  - 2) 
squared principle minors of the ( N  - 1) squared matrix M11. The coef- 
ficient bN-1 can be expressed as: 

b ~ - l =  ( - I l N - l  [IM111 + NflIP,l] J = 1  (Eq. 15) 

where: 

and where r,+l(jfl,2,. . .N - 1 )  is the row of N - 2 elements obtained 
from (k21,k31,. . . k ~ l )  by striking out the element k,+l , l  and c,+l is the 
column of N - 2 elements obtained from (klz,k13,. . . k l N ) T  by striking 
out the element k l , + l .  Expanding the determinants IP, I (jf1,2,. . .N - 
1) by their first rows, then: 

where lZ,l is the summation of determinants associated with the ex- 
pansion of 1 P, I along ',- Since the elimination constant k 10 does not 
occur in any r f f l  or any M,, , the determinants 12, I are independent of 
klo.  Since Ml1 is also independent of klo, then 6 N - 1  is directly obtainable 
from bN-1 by setting klo = 0 in Eq. 16, thus: 
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Substitution of Eqs. 16 and 17 into Eq. 12 establishes the identity ex- 
pressed in Eq. 12 and thus complete the proof of Theorem 1. 

Theorem 2-For a known nonnegative and finite drug input function, 
In@), into Compartment 1 of an open irreducible compartmental system, 
with sample and loss from Compartment 1 only, the volume of distribu- 
tion of the corresponding closed system, V, is given by: 

J w  tC(t)dt 
- - 

where R(t)  is the observed drug concentration-time function produced 
by the input function In(t), and C ( t )  is the concentration-timefunction 
produced by a unit impulse input into Compartment 1. Both R ( t )  and 
C ( t )  are observed in Compartment 1. 

Proof-By application of standard linear system theory the mass of 
drug, R ( t ) ,  in Compartment 1 is: 

R( t )  = $' In(T)Xl(t - T)dr 03s. 19) 

where X,(t)  is the mass-time function in compartment 1 that would 
result from a unit impulse input into Compartment 1. 

By the standard Laplace transform theory: 

Lim ts-0 

s-0 ds 

Since h ( t )  is a nonnegative function with In(m) = 0 the limit of In(s) as 
s - 0 is J; In(t)dt and the limit of -dIn(s)/ds a s s  - 0 is 1; tIn(t)dt. 
Also, since Xl ( t )  is nonnegative and integrable on (0,m) the limit ofnl(s) 
as s - 0 is J tX l ( t )d t ,  and the limit of -dnl(s)/ds is SctXl(t)dt .  
Applying a known theorem on the limits of products of Laplace trans- 
forms (10): 

r" tR(t)dt = 
J0 

Also, applying the known theorem on limits (10) to Eq. 19: 

An expression for J;tXl(t)dt/J,"Xl(t)dt is obtainable by a rear- 
ranging Eq. 21 and dividing by Eq. 22, which on dividing by J;X,(t)dt 
and utilizing Eq. 22 gives: xw tXl(t)dt  

(Eq. 23) 

Substituting V l C ( t )  = X,(t)  and VlR(t)  = R ( t )  into Eq. 23 gives Eq. 18 
and completes the proof of Theorem 2. 

DISCUSSION 

Theorems 1 and 2 state model-independent methods for calculating 
a drug distribution volume. The expressions are model independent in 
the sense that no knowledge of the topology of the compartmental system 
is required. Since no constraints on the topology are applied, then no 
constraints on either the eigenvalues of the coefficient matrix or on in- 
tercompartmental rate constants are applied. Additionally, it is not 
necessary to specify some functional form (e.g., a summation of expo- 
nentials) to apply the equations. However, it is assumed in the derivation 
that irreversible drug loss from the system occurs only from the sampled 
compartment. The proofs of Theorems 1 and 2 are strictly analytical and 
have the advantage of being mainly algebraic. No concepts of clearance 
or equilibrium elimination are required. 

The derived volume is clearly related to the apparent volume of the 
corresponding closed system. 

Although the terms compartments are used in the derivation, their use 
should not be interpreted literally as circumscribable regions of space 
where physical translocation of matter takes place. The term is merely 
a convenience. Matrix A is simply an operator for a stable linear system, 
and the conditions of nonnegative off-diagonal elements in A are nec- 
essary if observations in the system are to be nonnegative functions. Also, 
the negative diagonal elements are necessary for stability. Consequently, 
the derivation could have followed equally well the line of considering 
a stable linear system which would also have yielded Eq. 1 but where the 
elements of Matrix A would have no meaning in relation to compart- 
mental analysis. These latter concepts have been discussed previously 
(11). 

To apply Theorem I, it is not necessary to assume any functional form 
to describe the C ( t )  data. The numerical values of the required integrals 
can be obtained by standard numerical methods (2). For Theorem 2, it 
is necessary to know the functional form of the input function. For ex- 
ample, the input function may be a step input of magnitude k and of 
duration T. In this case J'; In(t)dt = k r  and Jtt In@) dt  = kr2 /2 .  The 
numerical values of the other integrals in Theorem 2 are obtainable by 
standard numerical methods. 
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